

卒業研究生、2006年度

稲田功一郎

奥平将俊

西田武洋

本間正徳

Seminar-Progresses-A1.ppt

2006/9/29

Ultrafast Optical Logic Lab., UEC

Progresses and plans, Sep. 26th

Koichiro Inada

• Stability of DC

2006/9/29

直流電源電圧の変動

乾電池を用いたLD用直流電流源

I_{LD}:注入電流

乾電池使用による周波数ゆらぎ

温度コントローラによる周波数ゆらぎ

T=0.002 (TED200)

$$\Delta \lambda = 2.3 \times 10^{-4}$$
 nm (左図より)

f = 28MHz

図4 NEL-DFBレーザのピーク波長の 温度依存性 (中本 2006/8/5)

注入電流150mA

使用したレーザー:NEL製型番 NLK1C6BAAA SN/511091 室温21.9 、湿度54.4%

2006/9/29

Plans

- 乾電池を用いた電源回路製作
 DFB2台ヘテロダイン実験
- 2.5kmファイバによるDFB-LDの線幅測定 (10月第2週頃到着)
- 箱詰めに必要な部品の注文

1段上の目的 DFB-LD ビートスペクトル幅の原因を調査し、原因を低減する。

2006/07/18 DFB2台ヘテロダインによるビートスペクトル

Progresses and Plans(September)

奥平将俊 2006/9/26

2006/9/29

- WDMカプラーとは
- WDMカプラー損失測定
- Bookham社製980nm Pump LD動作試験

WDMカプラーとは

用途

特定の波長の光を特定ポートから入射 して同一ポートから出射したり(合波)複 数の波長を同一ポートから入射して特定 のポートにそれぞれ波長を分けて出力 する(分波)

- 特徴
- ・挿入損失が小さい
- ・光ファイバーとの接続がしやすい
- ・価格が光学部品などを使用した 製品と比較してコストが安い

- 具体例としは ・二波長合波分離
- ・EDFAの信号光・ポンプ光合波

WDMカプラー損失測定(980nm)

WDMカプラー損失測定(1550nm)

Bookham社製980nm Pump LD動作試験

2006/9/29

980nm Pump LDのV-I,L-I特性

V-Iについて

立ち上がり電圧は共に1.3V付近であり、データシートと良く一致した。その後の傾向も良く似ている。

L-Iについて

二台とも電流上昇と共に出力が増加している。484は900mA注入において480mWまで出たが、654は 40**3000/ま2**のしか出なかった。その後ファイバSの旋端をぬまをでから再測定したところ520mW出力を示した。15

付録 Bookham 980nm Pump LD 測定結果 Serial Number OC229484.001

電流(mA)	電圧(V)	強度(mW)	モニター電流(µA)	電圧(V)	電流(mA)	モニター電流(µA)
10	1.258	0	3	1.258	0	3
20	1.297	0	4	1.296	0	4
30	1.324	0	5	1.326	0	5
40	1.342	2.5	19	1.344	2.3	20
50	1.352	7.5	47	1.356	7	47
60	1.364	13.5	78	1.368	11.5	72
70	1.375	18.2	90	1.378	16	94
80	1.386	24	115	1.389	20.7	120
90	1.396	29.3	138	1.399	25.3	145
100	1.406	36	162	1.410	30.2	172
150	1.458	63.8	277	1.463	55	294
200	1.509	90	390	1.515	78	412
250	1.559	120	499	1.567	104	525
300	1.610	148	609	1.620	128	635
350	1.661	173	712	1.672	151	739
400	1.711	202	810	1.724	174	839
450	1.762	228	902	1.776	197	931
500	1.812	252	979	1.828	220	1013
550	1.862	280	1068	1.881	242	1096
600	1.912	320	1162	1.932	265	1177
650	1.963	344	1221	1.985	289	1249
700	2.015	378	1292	2.036	320	1306
750	2.065	402	1360	2.089	342	1380
800	2.115	415	1435	2.140	365	1450
850	2.166	448	1482	1.ppt 2.193	385	1494
900	2.216	480	1527	2.246	406	1543

Plans

- LDの測定方法についての考察
- EDFの長さ指定
- 電源・温度コントローラー等部品選定

Monthly Progresses and Plans (September)

Takehiro Nishida

2006/9/29

Seminar-Progresses-A1.ppt

18

 $\Delta \Omega \Omega C / \Omega / \Delta C = T_{--}$

・パルスの利得飽和のモデル計算

・モデル計算式

sech/
$$JIZ$$
: $P(t) = \sec h\left(\frac{2\ln(1+\sqrt{2})}{FWHM}t\right)$ (1.1)

SOAの利得式:
$$G[n(t)] = \exp(dg/dn \cdot n(t) \cdot \Gamma L)$$
 (1.3)
= $\exp(const \cdot n(t))$

不飽和利得: $G_0 = \exp(g_{\Omega} n_{\delta} t_{-Pr} n_{\sigma} h_{\delta} s_{-A_1} c_{\rho} n_{\delta} t = \ln G_0 / n_0$ (01.4)

$$\frac{d}{dx}y(x) = f(x) \qquad (1.5)$$

$$dy(x) = f(x) \cdot dx$$

$$y(x + dx) = y(x) + dy(x)$$

y(0)を決め dy(0)を決める。 $y(1) = y(0) + dy(0) \rightarrow y(2) = y(1) + dy(1) \rightarrow \cdots$

・プログラミングの流れ

n(t0) 定数の条件 dn(t0)FWHM2 pspeakpower20 mW G(t0) Pout(t0) $Pout(t0) = G(t0) \times Pcw$ Seminar-Progresses

2006/9/29

今後の計画

• モデル計算に関する勉強

パルス列を入力し、パルス幅、ピークパワー、周波数などを変え たときの考察 Siegmanのモデル式を用いた検証

Progresses and Plans(September)

2006/9/26 Masanori Honma

内容

- SMFを通した後のスペクトルの測定
- 実験構成
- LeftoverとSignal(SC発生)によるUpconvertionの測定(角度依存性、パルス幅)
- 計画

Upconvertion(BBO角度依存性)

BBO:257 °

<u>パルス幅の測定(Opal:1290nm、150mW)</u>

- ・左図がBPFなし before spectral slicing、FWHM:135fs SMFを通した後のパワー:15mW
- ・右図がBPFあり after spectral slicing(1310nm)、FWHM:350fs SMFを通したBPF後のパワー:1.3mW Seminar-Progresses-A1.ppt 31

<u>パルス幅の測定(Opal:1300nm、150mW)</u>

- ・左図 before spectral slicing、FWHM:205fs パワー:16mW
- ・右図 after spectral slicing、FWHM:300fs 20がクー:1.5mW Seminar-Progresses-A1.ppt

計画

- Millenia、Tsunami、Opalシステムを起動させる 練習と理解
- 注文したSMF(20、30、40cm)によるSC発生を 用いた実験(パルス幅の測定)
- BPF(1280、1290nm)、偏光BS等の注文
- 自己位相変調について勉強