平成 18 年度 卒業論文

フォトニック結晶・量子ドット評価用

超高速ポンプ・プローブ計測システムの

入力ダイナミックレンジの研究

学籍番号 0312126

本間 正徳

電子工学科 光エレクトロニクス講座

指導教員 上野 芳康 助教授

提出日 平成 19年2月28日

指導教員印	学科長印

概要

電気的処理による動作限界(40Gb/s)を超える超高速な通信速度実現の為、全光信号処理技術の研究が進んでいる。そこで今注目されている材料として、フォトニック結晶(photonic crystal, PC) や量子ドット(quantum dot, QD)が挙げられる。

本研究では、筑波大から提供された PC と QD を用いた素子について、その特性を測定する為の実験構成を、ポンプ・プローブ計測法を用いて開発、改良した。その結果、直線型導波路 (straight-waveguide, ST-WG)における QD の吸収緩和時間の測定が可能となった。

目次

日八		
第1章	序論	1
第2章	研究の背景	2
2.1	全光通信	2
2.2	全光ゲート	2
2.3	ダイナミックレンジ	6
第3章	研究の目的、方法	7
3.1	目的	7
3.2	方法	7
第 4章	連続光(continuous wave, cw) - パルスの組み合わせによるポンプ・プローブ計測:	法 8
4.1	BBO(-BaB ₂ O ₄)結晶	8
4.2	BBO 結晶の位相整合	11
4.2	2.1 位相整合条件の定義	11
4.2	2.2 位相整合条件の計算結果	11
4.3	BBO 結晶における変換効率	14
4.	3.1 理論值	14
4.3	3.2 実験値	14
4.4	cw - パルスの組み合わせによるポンプ・プローブ計測法の結論	17
第5章	パルス - パルスの組み合わせによるポンプ・プローブ計測法	18
5.1	シングルモードファイバー(single-mode fiber, SMF)によるスーパーコンティ	ニウム
(supercontinuum, SC)発生の測定	20
5.	1.1 SC 発生に用いる SMF の選定	20
5.	1.2 SMF を挿入する位置	22
5.	1.3 スライス後の時間パルス幅の測定	22
5.2	フォトニック結晶(photonic crystal, PC)と量子ドット(quantum dot, QD)を	併せた
(PC/QD)サンプル測定用実験構成	27
5.3	直線型導波路(straight-waveguide, ST-WG)における QD の吸収緩和時間の測定	29
5.4	パルス - パルスの組み合わせによるポンプ・プローブ計測法の結論	33
第6章	結論	34
謝辞		35
参考文	南代	36

第1章 序論

現在の光通信分野では、光を光で制御する全光信号処理技術を実現する為に、光で制御される 全光ゲートの研究が盛んに行われている。その目指すポイントは、高速動作・低パワー動作・良好 なゲート特性・小型化(集積化)である。既に、半導体光増幅器(semiconductor optical amplifier, SOA)を用いた対称マッハツェンダー(symmetric mach-zhender, SMZ)型全光ゲートがあり、これ については多く研究がなされている[1]。

この目指すポイントをより良く改善する方法として、PC や QD を用いた素子が注目されている。PC、QD 各々については既に多くの研究報告があるが、PC と QD を併せた(PC/QD)素子についての研究は少なく、実用化には遠い。そこで、PC と QD を用いた SMZ 構造を持つ素子について、特性を評価する為の実験構成の開発を目指す。

これは将来の実用化に向けての一歩である。

第2章 研究の背景

2.1 全光通信

現在の光通信では、信号の変調時に電気的処理を行う構成になっている。その為、通信速度は 電気の動作限界である 40Gb/s に制限されている。この限界を超える通信速度実現の為、光を光 で制御する全光信号処理(全光ゲートなど)の研究がなされている。

全光信号処理技術は、通信の高効率化(消費電力、コストの低減)だけでなく、超高速化や波長 資源の有効利用などによる柔軟性の改善などにも期待されている。

2.2 全光ゲート

全光ゲートとは、全光信号処理する超高速なスイッチング素子である。その中で、SOAの持つ 非線形光学現象を用いた SMZ 型全光ゲート(図 2.1)の研究が盛んに行われている[1]。

そんな中、高速動作・低パワー動作・良好なゲート特性・小型化(集積化)をより良く改善する方法 として、PC や QD を用いた素子が注目されている。1 つの例として、筑波大学から提供された PC/QD ゲート素子(図 2.2、2.3)がある。SOA 型全光ゲートでは、MZ 干渉計の 2 つのアーム部分 に非線形エレメントである SOA を使用しているのに対し、PC/QD ゲート素子では光非線形媒体 としての QD が埋め込まれる構造が理想とされている。しかし現段階ではアームにのみ QD を埋 め込む事が困難であるので、サンプル全体に QD が存在する構造になっている。この素子では、 半導体のキャリヤ寿命に依存する遅い緩和(100ps)ではなく、超高速(1ps)な低パワー(100fJ 以下) のスイッチング動作と、奇麗なスイッチング窓動作が可能となる[2]~[4]。また、 /2~ の位相シ フトに必要な非線形導波路長は 100~300um であるので、PC で構成された SMZ 型全光ゲート (PC-SMZ)の大きさが 500um 程度に収まるとされている[5]。

これらの要因は、QDの特徴である半導体バルク結晶や量子井戸に比べ1桁以上小さな飽和パワー[6]、PCの特徴である強い光の閉じ込め、スローライト効果、大きな群屈折率(=小さな群速度)が挙げられている。

 $\mathbf{2}$

第6章 結論

初め、BBO 結晶を用いた cw - パルスの組み合わせによるポンプ・プローブ計測法を試みた。しかし、BBO 結晶でのパワー変換効率が 1.9×10⁻⁷、ダイナミックレンジが - 14dB と良くないことが判明し、測定には適さないという結論に達した。

そこで、実験構成(ダイナミックレンジ)の改善として、SMF(20cm)による SC 発生後のパルス を BPF でスライスしたものを用いたパルス - パルスの組み合わせによるポンプ・プローブ計測法 を試みた。その結果、提供された PC/QD サンプルにおける ST-WG の QD の吸収緩和時間の測 定が可能となり、ダイナミックレンジを~32.5 d B 得られる実験構成を完成した。

今後の課題として、PC/QD サンプルの導波路への結合損失の問題、SMZ 型導波路の測定にお ける構成の問題が挙げられる。

現在の結合損失は~20dB である。素子自体の解決策であるが、導波路の位置をレンズと呼ば れる扇形の構造にする事により、損失を~10dB にする事が出来ている(図 2.3)。道具の面では、 現在使用している SLF と先端の曲率半径の違うものを使うという方法が考えられる。

このサンプルにおける大きな目的は、SMZ 型導波路でゲート特性が見られるか否かを評価する ことである。SMZ 型導波路では、制御光(CP)が2つ必要となるので、現在の2倍近くのパワーが ポンプ光に要求される。その為、SMZ 型導波路を測定する際に、主となる部分が今の実験構成の ままで良いか否かを判定しなければならない。悪いようならば、実験構成の組み直しが必要にな る。 謝辞

本研究を進めるにあたり、ご指導して下さった上野芳康助教授に深く感謝致します。研究に対しーから教えて下さり、実験を一緒に行って頂いた Salleras さんに深く感謝致します。また、発表や論文、その他多岐にわたり助言、ご指導して下さった坂口さん、大平さん、中本さんにも深く感謝致します。

改めて、上野研究室の皆様に感謝の意を表します。

参考文献

 K. Tajima, S. Nakamura, A. Furukawa, and T. Sasaki, "Hybrid-Integrated Symmetric Mach-Zehnder All-Optical Switches and Ultrafast Signal Processing", IEICE Trans. Electron., vol.E87-C, no.7, pp.1119-1125, July 2004

[2] H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa and K. Asakawa, "Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks", OPTICS EXPRESS, vol.12, no.26, pp.6606-6614, Dec. 2004

[3] Y. Sugimoto, Y. Tanaka, N. Ikeda, H. Nakamura, K. Kanamoto, S. Ohkouchi, Y. Watanabe, K. Inoue, and K. Asakawa, "Fabrication and Characterization of Photonic Crystal-Based Symmetric Mach-Zehnder(PC-SMZ) Structures Based on GaAs Membrane Slab Waveguide", IEEE Journal on Selected Areas Communications, vol.23, no.7, pp.1308-1314, July. 2005

[4] H. Nakamura, K. Kanamoto, Y. Nakamura, S. Ohkouchi, H. Ishikawa and K. Asakawa, "Nonlinear optical phase shift in InAs quantum dots measured by a unique two-color pump/probe ellipsomewtric polarization analysis", Journal of Applied Physics, vol.96, no.3, pp.1425-1434, Aug. 2004

[5] Y. Watanabe, N. Yamamoto, K. Komori, H. Nakamura, Y. Sugimoto, Y. Tanaka, N. Ikeda, K. Asakawa, and K. Inoue, "Simulation of group velocity-dependent phase shift induced by refractive-index-change in air-bridge-type AlGaAs two-dimensional photonic crystal slab waveguide", J. Opt. Soc. Am. B, vol.21, no.10, pp.1833-1838, Oct. 2004

[6] H. Nakamura, K. Kanamoto, Y. Nakamura, Y. Sugimoto, N. Ikeda, Y. Tanaka, S. Ohkouchi, H. Ishikawa and K. Asakawa, "Drastic enhancement of optical non-linearity in InAs quantum dot embedded in photonic crystal waveguide for all-optical switch application", CLEO, vol.1, 2004

[7] T. Hessler, "Dynamique du gain dans les amplificateurs optiques a semiconducteur en regme femtoseconde", doctor thesis, EPFL, 2000

[8] J. Shah, "Ultrafast Luminescence Spectroscopy Using Sum Frequency Generation", IEEE Journal of Quantum Electronics, vol.24, no.2, Feb. 1988

[9] F. Salleras Vila, "Spatial and temporal characterization of semiconductor optical amplifiers and novel enhancement configurations", doctor thesis, EPFL, 2005

[10] V. G. Dmitriev, G. G. Gurzadyan, D.N.Nikogosyan, "Handbook of Nonlinear Optical Crystals", Springer-Verlag, 1991

[11] Govind P. Agrawal, "Nonlinear Fiber Optics", Optics and Photonics, 2001