Progress and plan Nov.

2008/11/24 Yasutaka Nakahra

発表内容

- ASEの時間測定
 Iopを変えるごとにSOAを冷ましてから
- ・シュミレーションによるASE算出方法
- ・ DISC Gate 50Gbps 実験
- 変換効率測定
 山路さんの見学

前回のASE時間測定

カップリングのズレは熱的な要因ではない?

Iopを200[mA]から250[mA]に変えた時にSOAを一旦冷まして 測定。

シュミレーションによるASE算出式

シュミレーション結果

明らかに、計算が違っている。 もう一度、計算式から見直してやり直し。

Plan

12	月 	1	月 ¦
温度制御につい て先生、メンバー と相談	・サーミスタを用いてChip SOAの正確な 温度上昇を測定 ・温度調整実験	ĩ	
Chip SOAのカッ プリング練習(山 路さんに教えて もらいながら)			
シュミレーション 手直し	↓ 温度変化を元に 腺膨張も考える		
	I Seminar-Progresses-11-2008 ppt		

Seminar-Progresses-J1-2008.ppt

サーミスタ

質疑·応答

- P3とP5を比べて、ASEの減少量が大きく異なるのはなぜ?(山路さん)
 →よく分からないが、もともとのカップリング調整がうまくいっていなかったのかも。
- P4で、カップリングは、"その他"に含まれているのか?(山路さん)
- P5でSOAを一旦冷ましたと書いてあるが、何を判断材料にしたのか?(本間さん)
 →ペルチェ素子への注入電流の変動が収まってから。
- P6 線球ファイバのスポット径はどうやって測った?(本間さん)
 →スペックシートを見て。
- P6 SOAchipの活性層の面積だが、光の干渉により広がり長方形にはならないだろう。(竹内さん)
- P7 シミュレーション結果を載せるときは、算出式も一緒に掲載すること。 (竹内さん)
- カップリングロスのずれの熱的要因以外も考えてみたら?(竹内さん)
- P8 サーミスタの取り付け方法は考えているのか?(竹内さん)
 →考えていない。伝熱性の高い両面シール使用。

進捗と計画報告(11月) 2008年11月25日

NGUYEN TUAN ANH

発表内容:

1.3 µ mバルクチップSOA の透過率と位相シフト

位相安定、強度安定

12月の計画

光ヘテロダイン方式ポンプ・プローブ計測法

1.3µm bulk chip SOAの緩和過程

位相ノイズが大きい。→測定システムの影響を評価する必要がある

位相ノイズの偏差

一回の測定は10分間

結論:位相ノイズの一部はSOAによるものだと判断する。 測定装置の位相ノイズの偏差は約6°。

→目標:測定装置の位相ノキャーの備差を0^{8.pp}級にする。

強度ノイズの偏差

Coverにより十分強度の 測定精度が得られる。

12月の計画

- 1・電気スペアナを使ってビート信号の電気スペクトル を測定し分析する。
- 2・卒論の概要、目次、これまでの結果、図表、参考 文献を書き始める。締め切りは12月19日。
 - •日本語能力試験1級(12月7日)

質疑応答

- 中原:coverっていうのは何のこと?
- Anh:測定装置をバラックボックスにして外の風と光が入ってこないようにする。
- 杉浦:電気スペアナを使うとノイズの原因が分かるの?
- Anh:ノイズの原因が分からなけれどもなんらかの手がかりが分かると思います。
- 竹内さん:サンプルの後のMOなどによる反射はSOA内部に影響を与えて、 ノイズの原因になるかもしれない。
- Anh:その効果は小さいと思います。よほど大きいパワーの光が入ってこな ければSOAには影響がありません。現在の測定装置では大きいパワーの 反射光はないと思います。
- 山路さん: SOAの透過率では小さい谷ができることは注入電流が緩和するっていうことですか。
- Anh:はい、そうです。他機関の論文にそういうことが載っています。

Monthly progress and Plan(Nov.) 2008/11/25

Kenta Sugirua

50G DISCGate 波長変換実験#1~3(Open-Lab.) 利得スペクトル非飽和について(再確認)

50G DISC Gate波長変換実験#1~3

実験構成(山路さん)

実際に習った内容

実験	#1	#2	#3
モードロック パルス発生	山路さんのを見学	山路さんに1つずつ順序を習って、 12.5Gモードロックパルスを発生	前回メモしたノートを見ながら 起動・パルス発生
MUX 12.5→25→50G	西田さん指導のもと Delay,VOA調節、スペクトル観測	3人で50Gに多重	ほとんど慣れた 50Gまでなら、杉浦・中原でMUX設定可能 (相関計はまだ不安)
MZI構築	杉浦・中原2人で構築	杉浦・中原2人で構築	杉浦・中原2人で構築
相関計操作	全て山路さん	配線程度は手伝う	EDFA・波長板の調節は手伝う (まだ、1人で扱えないと思う)
LN変調	行わなかった	行わなかった	擬似ランダム信号・データ信号を発生 させてみたが、うまく1,0を観測できなかったり、 DISC出力強度が弱すぎた データ信号の波長変換は失敗とした

モードロックパルス発生・MUX

DISCGate波長変換結果(時間波形)

■注入電流を大きくすると、出力パルス強度が高くなった。 ■パルス強度と、CW強度が出力波形(透過率、非線形位相シフト)に関係する。

パルス強度は高く、CW光強度はある程度低く。

DISCGate出力強度を高くするにはmindt Ab強度は高く、2008 地強度はある程度低く。 但し入力パルス強度が高すぎるとCW光の透過率が下がるのでDISC出力は下がる

DISCGate波長変換結果(スペクトル)

利得スペクトルの非飽和確認(再)

しかし、

■実際に入力光強度を上げて、利得の飽和を観測していない
 ■入力光強度が弱いときの利得が高い
 ■利得が安定しているところの値が小さい

⇒<u>以上をふまえて、もう一度測定し、非飽和を確認するべき</u>

質疑応答

■モードロックパルスに見られたサブパルスの原因は、院生にも聞いたのか?(本間) →聞いたが、わかりませんでした。

→1つずつ測定系を減らしていき、原因を突き止める方法がある(西田)

■非飽和確認のグラフで、横軸は出力パワーで正しいのか(竹内) →正しいと思います。 →後でデータを見せて(竹内)

■プランで、なぜ積分強度を求めるのか(本間)
→スライスした外側の積分強度が高すぎると、測定している波長の利得が正確にわからない。

■プランで、ホールディングビームを用いた緩和時間測定に使うホールディングビームの波長は(竹内)
 →最初は、利得スペクトルを考慮せず練習し、その後利得スペクトルを見て利得の高いところ、
 低いところをホールディングビームの波長にして、緩和時間の変化を観測する

→坂口さんは、適当にホールディングビーム波長を変えていき、緩和時間が短くなったところに 設定していたと電話で聞いた(山路)

■プランで、最終的にはDISCへ応用しないのか(山路) →多分そこまではいけないと思う。