(19)日本国特許庁(J P)

(12) 特許公報(B2)

(11)特許番号

第2674382号

(45)発行日 平成9年(1997)11月12日

(24)登録日	平成9年(1997)7	月18日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	ΓI	技術表示箇所
H01S 3/18			H01S 3/18	

請求項の数6(全 6 頁)

(21)出願番号	特顯平3-235451	(73)特許権者	000004237
			日本電気株式会社
(22)出願日	平成3年(1991)8月21日		東京都港区芝五丁目7番1号
		(72)発明者	上野 芳康
(65)公開番号	特開平5-55699		東京都港区芝五丁目7番1号 日本電気
(43)公開日	平成5年(1993)3月5日		株式会社内
		(72)発明者	藤井 宏明
			東京都港区芝五丁目7番1号 日本電気
			株式会社内
		(72)発明者	五明 明子
			東京都港区芝五丁目7番1号 日本電気
			株式会社内
		(74)代理人	弁理士 本庄 伸介
		審査官	後藤 時男
			最終頁に続く

(54)【発明の名称】 半導体レーザ

(57)【特許請求の範囲】

【請求項1】 (0,0,1)面を持つ半導体基板と、 (0,0,1)面内圧縮歪を持ち、かつ、〔-1,1, 1]または〔1,-1,1]方向に秩序状態を持つ化合 物半導体層を少なくとも含む活性層と、該活性層を少な くとも含むレーザ共振器とを有することを特徴とする半 導体レーザ。

1

【請求項2】 (0,0,1)面から〔-1,1,0〕 方向または〔1,-1,0〕方向へ傾斜した面を持つ半 導体基板と、(0,0,1)面内圧縮歪を持ち、かつ、 〔-1,1,1〕または〔1,-1,1〕方向に秩序状 態を持つ化合物半導体層を少なくとも含む活性層と、該 活性層を少なくとも含むレーザ共振器とを有することを 特徴とする半導体レーザ。

【請求項3】 前記レーザ共振器が〔-1,1,0〕方

2

向に形成されていることを特徴とする請求項1または2 に記載の半導体レーザ。

【請求項4】 前記レーザ共振器が〔0,0,1〕方向 に形成されていることを特徴とする請求項1または2に 記載の半導体レーザ。

【請求項5】 前記半導体基板がGaAsでなり、GaAs基板上に形成した半導体多層構造の中に前記活性層として(Alx Gatx), Inty P層またはInxGatx Asty Py層が設けられていることを特徴と
 10 する請求項1乃至4に記載の半導体レーザ。

【請求項6】 前記半導体基板がInPでなり、該In P基板上に形成した半導体多層構造の中に前記活性層と してIn1-x GaxAsyP1-y 層が設けられているこ とを特徴とする請求項1乃至4に記載の半導体レーザ。 【発明の詳細な説明】 【0001】

【産業上の利用分野】本発明は、情報処理機器あるいは 光通信機器の光源に用いる半導体レーザに関する。

【0002】

【従来の技術】半導体レーザは極めて小型でかつ量産性 に富むため、現在情報処理機器や光通信機器の光源とし て幅広く利用されている。実用的な光源として半導体レ ーザに要求される主な特性は、発振閾値電流が低いこ と、摂氏40~60 で安定な高温動作が可能なこと などである。近年、勝山らはGa₀.43 In₀.57 Pからな るいわゆる歪量子井戸活性層を用いた半導体レーザが比 較的低い発振閾値電流を示すことをエレクトロニクスレ ターズ誌(第26巻1376頁、1990年)に報告し た。また、伊知地らは I n 0.22 G a 0.78 A s からなる 歪 量子井戸活性層を用いた半導体レーザで低い発振閾値電 流を報告している(第12回半導体レーザ国際会議ダイ ジェスト44頁、1990年)。これらの半導体レーザ では、面内圧縮歪を受けた量子井戸活性層の価電子有効 質量が低下するために発振閾値電流が低減すると考えら れている。

【0003】

【発明が解決しようとする課題】 歪量子井戸活性層を用 いた従来の半導体レーザの発振閾値電流は低いが、その 高温動作特性は必ずしも良くない。これは、該活性層中 の注入キャリア密度が大きく、該キャリアの閉じ込めが 不十分だからである。高温動作特性を改善するために は、さらに発振閾値電流を低減することが必要である。 【0004】

【課題を解決するための手段】本発明の半導体レーザの 1つは(0,0,1)面を持つ半導体基板と、(0, 0,1)面内圧縮歪を持ち、かつ、〔-1,1,1〕ま たは〔1,-1,1〕方向に秩序状態を持つ化合物半導 体層を少なくとも含む活性層と、該活性層を少なくとも 含むレーザ共振器を有することを特徴とする。(0, 0,1)面から〔1,1,0〕方向、〔1,0,0〕方 向、〔0,1,0〕方向など任意の方向へ多少傾斜した 面を持つ半導体基板を用いてもよい。 【0005】また、本発明のもう1つの半導体レーザ は、(0,0,1)面から〔-1,1,0〕方向あるい は〔1,-1,0〕方向へ傾斜した面を持つ半導体基板 と、(0,0,1)面内圧縮歪を持ち、かつ、〔-1, 1,1〕または〔1,-1,1〕方向に秩序状態を持つ 化合物半導体層を少なくとも含む活性層と、該活性層を 少なくとも含むレーザ共振器を有することを特徴とす る。ただし厳密には、該圧縮歪面は(0,0,1)面か ら〔-1,1,0〕方向あるいは〔1,-1,0〕方向 へ傾斜した面である。 【0006】また本発明の半導体レーザはGaAs基板

L 0 0 0 0 J よた本光明の牛導体レー りは G a A S 基板 上に、圧縮歪と秩序状態をもつA 1 G a I n P または I n G a A s P 層を有する半導体層を備えることを特徴と 50 4

する。あるいはInP基板上に、圧縮歪と秩序状態をも つInGaAsP層を有する半導体層を備えることを特 徴とする。

【0007】

【作用】秩序状態と面内圧縮歪を持つ活性層を有する本 発明の半導体レーザの作用を説明する。まず、秩序状態 の作用について述べる。五明らのグループ(フィジカル レビューレターズ誌第60巻2645頁、1988年) および他のグループはGaInP層、AlGaInP

- 10 層、InGaAs層やInGaAsP層などのエピタキ シャル層が秩序状態を持つことを報告している。ただし これらの半導体層が秩序状態を持つか否かはエピタキシ ャル成長条件に依存する。秩序状態を持つGa...。 In ... Pの場合、Ga原子の副格子とIn原子の副格子が [-1,1,1]あるいは[1,-1,1]方向に交互 に規則的に並ぶ。マスカレンハスらは、[-1,1, 1]方向に該秩序状態を持つ半導体層の基底準位間発光 再結合が発生する光の電気ベクトルは(-1,1,1) 面内に偏ると報告した(フィジカルレビューレターズ誌
- 20 第63巻2108頁、1989年)。従って、〔-1, 1,1〕あるいは〔1,-1,1〕方向に秩序状態を持 つ半導体層で発生する再結合光の電気ベクトルは(-1,1,1)面あるいは(1,-1,1)面に偏る。こ れに対し、無秩序状態層で生じる光の電気ベクトル方位 は、等方的である。次に、圧縮歪の作用については、 (0,0,1)面に面内圧縮歪を持つ半導体層の基底準 位間発光再結合が発生する光の電気ベクトルは(0, 0,1)面内に偏ることが知られている。
- 【0008】本発明の半導体レーザの活性層は以上述べ 30 てきた秩序状態の作用と圧縮歪の作用を兼ね備える。該 活性層の再結合光の電気ベクトル方位は、秩序状態の作 用により(-1,1,1)面または(1,-1,1)面 に偏る。さらに、該電気ベクトル方位は面内圧縮歪の作 用により(0,0,1)面内に偏る。これらの結果、図 3(a)に示すように、本発明の半導体レーザの活性層 で生じる再結合光の電気ベクトルは(-1,1,1)面 または(1,-1,1)面と(0,0,1)面に共に含 まれる唯一の方向つまり〔1,1,0〕方向に偏る。

〔1,1,0〕方向の電気ベクトルを持つ光の放射方位
は(1,1,0〕面内方位である。従って、〔-1, 1,0〕方向や〔0,0,1〕方向などの(1,1, 0)面に含まれる方位に形成されたレーザ共振器を有す 本発明の半導体レーザでは、全再結合光のうちで発振モ ードに利得を与える再結合光の割合が従来より高い。この結果、該半導体レーザは低い発振閾値電流を示す。従 来の歪量子井戸活性層半導体レーザは格子歪の作用だけ を受けるため、図3(b)に示すように発光再結合光の 電気ベクトル方位は(0,0,1)面内の自由な方位を とる。この場合の再結合光は全方位へ放射し、発振モー
50 ドに利得を与える再結合光の割合が低い。

【0009】また、本発明の他の半導体レーザでは、 (0,0,1)から〔-1,1,0〕方向(または 〔1,-1,0〕方向)に傾斜した面を持つ半導体基板 を用いる。(0,0,1)面を持つ半導体基板上のエピ タキシャル層が持つ該秩序状態の方位は〔-1,1, 1)方向と〔1,-1,1〕方向が同等に混在している のに対し、(0,0,1)から〔-1,1,0〕方向 (または〔1,-1,0〕方向)に傾斜した面を持つ半 導体基板上では該秩序状態の方位が〔-1,1,1〕方 向(〔1,-1,1〕方向)に偏ることが報告されてい る(ジャパニーズジャーナルオブアプライドフィジクス 誌第28巻L1728頁1989年、および、1991 年春季応用物理学関係連合講演会講演32a-ZG-5)。つまり、該傾斜基板上の該エピタキシャル層が持 つ秩序状態の秩序度はより高い。従って、先に述べた本 発明の作用はより強く働く。該傾斜基板を用いた場合の 圧縮歪面方位は(0,0,1)面から傾くが、本発明の 作用の原理に従い再結合光の放射方位はやはり(1, 1,0)面内方位に偏る。レーザ共振器の方向も〔-1,1,0)方向から〔0,0,1〕方向へ、あるいは 20 〔0,0,1〕方向から〔-1,1,0〕方向へ傾く が、これらのレーザ共振器方位は依然(1,1,0)面 に含まれる。従って上述の傾斜基板を用いた場合の再結 合光放射方位とレーザ共振器方位の間の幾何学的関係 は、(0,0,1)基板の場合の関係と厳密に同等に保

たれる。

[0010]

【実施例】図1は本発明の半導体レーザの1つの実施例 を示す。まず、Siドープのn型GaAsからなる半導 体基板2の上に1.2µm厚のSiドープのn型(Al 0.7 G a 0.3) 0.5 I n 0.5 P からなるクラッド層 3、 多重歪量子井戸からなる活性層4、1.2µm厚のZn ドープのp型(Alo.7 Gao.3) 0.5 In 0.5 Pから なるクラッド層5、をエピタキシャル成長した。該多重 ・ 歪量子井戸は、3層の8nm厚アンドープGa0.40 In 0.00 P面内圧縮歪井戸層と4層の4nm厚アンドープ (Alo.4 Gao.6) 0.55 In 0.45 P 歪障壁層で構成し た。面内圧縮歪井戸層に(Alx Gat-x), Int-y P層(y<0.51)やIn_x Ga₁-x As層(x> 0)を用いることも可能である。また、該井戸層にIn x Ga_{1-x} As_{1-y} P_y 層(x > 0.49y)を用いる と、例えばGa: In比を1:1に保ちながら(x= 0.5)面内圧縮歪をかける(y=0.1)ことができ る。このことは、秩序度の高い秩序状態と圧縮歪を共存 させる上で役立つ。また、該井戸層および該障壁層にI n_{1-x} Ga_x Asy P_{1-y} 層を用いてもよく、この場合 は半導体基板2、クラッド層3、クラッド層5などには In Pを用いる。

【0011】半導体基板2の面方位は、(0,0,1) 体基板2の上に1.2μm厚のSiドープのn型(A] から〔-1,1,0〕方向へ6度傾斜した面とした。該 50 ω.7 Gaω3)ω5 Inω5 Pからなるクラッド層3、

活性層に秩序度の高い秩序状態を形成するためには、1 0度以下の傾斜角が適当である。半導体基板2の面方位 は(0,0,1)面でもよい。また、(0,0,1)面 から〔1,1,0〕方向、〔1,0,0〕方向、〔0, 1,0〕方向など任意の方向へ1~3度程度傾斜した面 を持つ半導体基板2を用いてもよい。このような半導体 基板は、よく知られているように、エピタキシャル結晶 のモホロジーを改善する効果を持つ。

6

- 【0012】エピタキシャル成長は減圧有機金属結晶成 長法(MOVPE法)で行った。本実施例では結晶成長 10 温度は660 、V族 / III 族供給原料比は200とし た。秩序度の高い秩序状態を形成するためには、結晶成 長温度は700 以下、V族/III 族供給流量比は10 0以上が適当である。これらの結晶成長条件は、本発明 の作用を持つ秩序状態を活性層に形成するための条件で あるから、クラッド層など他の層の結晶成長条件は異な るものであっても構わない。成長速度はおよそ1.8 μ m / h r であった。原料にはトリメチルアルミニウム (TMA)、トリエチルガリウム(TEG)、トリメチ ルインヂウム(TMI)、ジメチルジンク(DMZ)、 フォスフィン(PH³)、アルシン(A s H³)、ジシ ラン(Sі2 Н。)を用いた。ガスソース分子線結晶成 長法(GSMBE法)やケミカルビームエピタキシャル 法(CBE法)を用いて成長することも可能である。 【0013】エピタキシャル成長の後、フォトリソグラ フィー法を用いてクラッド層5にストライプ9を形成し た。ストライプ9の方位はほぼ〔-1,1,0〕であ る。該ストライプ9はレーザ共振器をなす。厳密に言え ば、傾斜基板を用いた場合、該レーザ共振器方向は〔-1,1,0〕方向から〔0,0,1〕方向などへ傾く。 30 ストライプ9を形成した後、Siドープのn型GaAs
- からなるブロック層6を該ストライプ9の外側に選択成 長し、さらにZnドープのp型GaAsからなるコンタ クト層7を全面に成長した。該コンタクト層7を形成し た後、n側の電極1とp側の電極8を形成した。最後に 劈開を行って相向かい合う反射鏡を(-1,1,0)面 に形成した。劈開の代わりにドライエッチングを用いて 該反射鏡を形成してもよい。また、垂直放射型半導体レ ーザ(T.Takamori etal., アプライ 40 ドフィジクスレターズ誌第55巻1053頁、1989

年)のように(-1,1,0)以外の面を持つ反射鏡で
 もよく、曲面を持つ反射鏡でもよい。以上の工程により、半導体レーザが完成した。該半導体レーザのレーザ
 光10の電気ベクトル方位は〔1,1,0〕方向、放射方向はほぼ〔-1,1,0〕方向および〔1,-1,
 0〕方向である。

【0014】図2は本発明の半導体レーザの他の実施例 を示す。まず、Siドープのn型GaAsからなる半導 体基板2の上に1.2μm厚のSiドープのn型(A1 7

多重歪量子井戸からなる活性層4、1.2µm厚のZn ドープのp型(Alo.7 Gao.3) 0.5 Ino.5 Pから なるクラッド層5をエピタキシャル成長した。該多重歪 量子井戸は、3層の8nm厚アンドープGa_{0.50} In 0.50 P 0.90 A S 0.10 面内圧縮歪井戸層と4層の4nm厚 アンドープ(Alo.4 Gao.6) 0.55 In 0.45 P 歪障壁 層で構成した。面内圧縮歪井戸層に(Alx Ga_{1x}) y In_{1-y} P層(y<0.51)やIn_x Ga_{1-x} As 層(x>0)を用いることも可能である。また、該井戸 層および該障壁層にInュェ GaェAs, Pュ, 層を用 10 と優れた高温動作特性を示した。(0,0,1)面から いてもよく、この場合は半導体基板2、クラッド層3お よびクラッド層5にはInPを用いる。半導体基板2の 面方位は、先の実施例と同様(0,0,1)から〔-1,1,0)方向へ6度傾斜した面としたが(0,0, 1) 面などでもよい。エピタキシャル成長は減圧有機金 属結晶成長法(MOVPE法)で行う。該活性層を構成 するGa0.50 I n 0.50 P 0.90 A S 0.10 に秩序状態を形成 するために結晶成長温度は660、5族/3族供給流 量比は200とした。原料等は先の実施例と同じであ ミカルビームエピタキシャル法(CBE法)を用いて成 長することも可能である。次にクラッド層5上にフォト リソグラフィーを用いて直径7µmの円盤状のSiO2 誘電体膜を形成した。該SiO2 誘電体膜の形状は、多 角形でもよい。次に、該SiO2 誘電体膜をマスクとし てZn不純物またはMg不純物またはSi不純物または Fe不純物またはAu不純物を結晶中に拡散した。これ らの不純物をイオン注入法で注入してもよい。この際、 円形または多角形の誘電体膜に覆われていない高濃度不 純物領域11の活性層4が含むGa0.50 I n 0.50 P 0.90 A S 0.10 の秩序状態は無秩序化され、該G a 0.50 I n 0.50 P 0.90 A S 0.10 のバンドギャップエネルギーは増大 し、屈折率は減少する。その結果、活性層4に注入され たキャリアは誘電体膜に覆われた領域(以下、発光領域 と呼ぶ)に閉じ込められ、かつ、該活性層4が発生する 光は該発光領域に閉じ込められる。該発光領域は、ほぼ (0,0,1)方向のレーザ共振器をなす。厳密に言え ば、傾斜基板を用いた場合、該レーザ共振器方向は 〔0,0,1〕方向から〔-1,1,0〕方向などへ傾 いている。拡散を行った後、該SiO2誘電体膜を除去 40 し、誘電体多層膜からなる反射率90%の反射膜12を 形成し、さらに電極8を形成した。この後、半導体基板 2に同形の円形または多角形の孔を形成し、該領域に誘

8

電体多層膜からなる反射率98%の反射膜13を形成し た。最後に半導体基板2の上に電極1を形成した。以上 により面発光型の半導体レーザが完成した。該半導体レ ーザのレーザ光10の電気ベクトル方位は〔1,1, 0〕方向、放射方向はほぼ〔0,0,1〕方向および 〔0,0,-1〕方向である。

[0015]

【発明の効果】〔-1,1,0〕方向に形成されたレー ザ共振器を有す本発明の半導体レーザは、低い閾値電流

〔-1,1,0〕方向へ6度傾斜した半導体基板を用い た半導体レーザは、(0,0,1)半導体基板を用いた 場合よりもさらに低い閾値電流を示した。また、(0, 0,1)面から〔-1,1,0〕方向へ6度傾斜した半 導体基板を用いた場合、Gao.so Ino.so Po.so As 0.10 歪量子井戸層を用いた半導体レーザはGa0.40 In 0.60 P 歪量子井戸層を用いた半導体レーザよりもさらに 低い閾値電流を示した。

【0016】また、〔0,0,1〕方向に形成されたレ る。ガスソース分子線結晶成長法(GSMBE法)やケ 20 ーザ共振器を有す本発明の半導体レーザは、従来の面発 光レーザに比べて低い閾値電流と優れた高温動作特性を 示した。

【図面の簡単な説明】

【図1】本発明の半導体レーザの1つの実施例を示す斜 視図である。

【図2】本発明の半導体レーザの他の実施例を示す断面 図である。

【図3】本発明の半導体レーザの活性層における再結合 光の電気ベクトル方位を説明した図である。

- 【符号の説明】
- 1 電極

30

- 2 半導体基板
- 3 クラッド層
- 4 活性層
- 5 クラッド層
- 6 ブロック層
- 7 コンタクト層
- 8 雷極
- 9 ストライプ
- 10 レーザ光
- 11 高濃度不純物領域
- 12 反射膜
- 反射膜 13

【図3】

(5)

フロントページの続き

(56)参考文献
特開 平5 - 67839 (JP, A)
特開 平4 - 273490 (JP, A)
特開 平5 - 41560 (JP, A)
特開 昭63 - 120492 (JP, A)
特開 平4 - 237183 (JP, A)
特開 平5 - 29700 (JP, A)