## 半導体キャリア冷却時定数限界を克服する 高速全光ゲートモデル設計とその実験着手状況

### 上野研究室 中本 亮一、森本 勇樹、西田 武洋

木村・一色研 - 上野研合同セミナー, 平成 20年4月4日

Ultrafast Optical Logic Lab., UEC



- ◆ 研究背景
  - 全光波長変換
  - キャリア・クーリング現象とその影響
  - スペクトル合成方式による全光波長変換
- ◆ 本研究の目的
- ◆ 設計した高速全光ゲートモデル(I), (II)
  - キャリア・クーリング現象を考慮したレート方程式
  - 強度、位相フィルタの設計
- ◆ 結果 モデル(I), (II)
- ◆ 実験着手状況
- ◆ まとめ







- *波長多重(WDM)*
- 一本のファイバに複数の波長の光を伝送



• 将来の波長変換システム



• *全光波長変換器 -* DISC, **D**elayed-Interference **S**ignal-wavelength **C**onverter 遅延干渉型



#### Ultrafast Optical Logic Lab., UEC



Ultrafast Optical Logic Lab., UEC







- スペクトル合成方式による全光波長変換 -



 スペクトル合成方式のメリット
 ■時間波形の歪みの解消
 ■伝送速度が大きくなるほどスペクトル合成しやすい
 ■ MEMS(微細ミラー)光フィルタ
 ■ アレイ導波路回折格子(AWG) + 可変アッテネータ+位相シフタ

Ultrafast Optical Logic Lab., UEC



### ■ キャリア・クーリング現象による波形歪みの解消

■ 従来の遅延干渉型とは、異なる方式の波長変換の考案





### 設計した高速全光ゲートモデル(I)

- 強度、位相フィルタの設計 -





アイパターン:1000 bitの重ね書き,入力信号:パルス幅 2.0 ps, 25 Gbit/sの擬似ランダム信号 (Word長: 2<sup>31</sup>-1)

擬似ランダム入力信号時でも、波形歪みの解消に成功
 アイパターンによる評価:消光比 14 dB の良好な結果

## 設計した高速全光ゲートモデル(II)

- 位相フィルタの改良設計 -



**結果** モデル(II) - アイパターンによる信号評価と周波数特性-





◆ スペクトル合成器 (Variable Bandwidth Spectrum Shaper, VBS)

情報通信研究機構(NICT)所有

主な仕様:

- 波長範囲 1538 1567 nm
- チャンネル数 340 ch
- チャンネル間隔 10 GHz(0.08 nm)
- アプリケーションを用いた強度・位相の独立制御

| 強度: | 0.0 ~ 20.0 dB |     |  |
|-----|---------------|-----|--|
|     | 0.1 dB step   |     |  |
| 位相: | 0.00 ~ 2.00   | rad |  |

0.01 rad step



まとめ

#### 目的

- キャリア・クーリング現象に基づく出力時間波形歪みの解消
- 従来の遅延干渉型波長変換(DISC)とは、異なる方式の波長変換の考案

#### 方法

■ スペクトル合成方式を用いた波長変換 モデル(I):強度、位相フィルタの設計 モデル(II):位相フィルタの改良設計

#### 結果

■ アイパターンによる信号評価

モデル(I):25 Gbit/s, 2.0 ps の擬似ランダム信号 消光比 **14 dB** の良好な結果

モデル(II):80~200 Gbit/s の擬似ランダム信号 モデル(I)より、消光比1~5 dBの改善

結論

■ 超高速波長変換において、スペクトル合成方式は有効な手段である。

#### 実験着手状況

スペクトル合成器(VBS)を用いた時間多重実験

今後の展望

- VBSの位相制御特性評価
- MLLD出力時間波形のパルス幅(2.8 ps)を、フーリエ変換限界パルス(1.7 ps)
  近くまで、狭くする。
- クロックパルス信号での波形歪み解消実験(繰返し周波数:10 GHz, 20 GHz (時間多重:2×10GHz))
   (データパルス信号での波形歪み解消実験)



予備スライド

実験結果 理論解析結果 15 15 10 Temporal chip gain (dB) 10 SOA InPhenix #1 150mA CW 1548nm +7dBm (chip) Gain (dB) 5 Pulse 1560nm 25GHz - 120 fJ () -5 -5 -10∟ -50 -10∟ -50 100 50 100 0 50 0 Time (ps) Time (ps)  $+20_{1}$ 2004 坂口氏@Ueno Lab キャリアクーリングなし Gain (dB) ( -20 +20-40 0 +40Time (ps) Ultrafast Optical Logic Lab., UEC

# MZIによる波形歪の起源



# 擬似ランダム信号での動作



## 高周波:>100 Gb/s 動作時のアイパターン比較

#### 入力パルス幅:1.0 ps

|          | 繰り返し周波数(Gbit/s) | 80   | 120 | 160 | 200 |
|----------|-----------------|------|-----|-----|-----|
|          | 高速全光ゲート()       | 10.4 | 5   | 5   | 4   |
| 消光比(dB)  | 高速全光ゲート()       | 11.7 | 10  | 10  | 5   |
|          | 高速全光ゲート()       | 0.99 | 0.7 | 0.6 | 0.6 |
| パルス幅(ps) | 高速全光ゲート()       | 0.74 | 0.6 | 0.4 | 0.6 |

120 Gbit/s



+1.0

+2.0

+1.0







Ultrafast Optical Logic Lab., UEC

# VBS構成



# VBSを用いた時間多重 10G -> 30G



## 位相補正値の入力パルスエネルギー依存性



SOA入力パルスエネルギーに関しては、ある値を決めると位相透過率の値は同じで良い