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Abstract: 
We propose a new method to characterize the conversion efficiency from the injected carriers to the excess photons in 
the process of all-optical gating in SOA, and investigated the efficiencies of SOAs with different structures. 
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1 Introduction 
Semiconductor Optical Amplifiers (SOAs) are expected to perform essential function in future OTDM-WDM networks 
acting as ultrafast nonlinear optical devices. Demonstrations of all-optical demultiplexing, 3R regeneration and 
wavelength conversion using SOA-based all-optical gates have been reported for operation bit rates exceeding 100 
Gbit/s[1-3]. As their capability of ultrafast gating has become clear, the lower limit of electric power consumption and 
its origin have been important issues from a physical and design viewpoint. When we use an SOA for optical gating, we 
must inject carriers into its active region at the cost of some electric power. Then population inversion is achieved, and 
we can cause stimulated emission, carrier recombination and gain/phase modulation by injecting cw or pulsed light. We 
have speculated, however, that there are several loss processes for the injected carriers, and only a part of them can be 
converted to photons through the stimulated emission. Then the conversion efficiency in each loss process will 
determine the required amount of power consumption. As far as we know, no method to evaluate these conversion 
efficiencies has been studied for SOA in an ultrafast operation. Therefore we propose a new characterization method of 
these efficiencies, and report measured results on several SOA samples with different chip-lengths and structures. This 
is our first step to find the way to fabricate an SOA with low power consumption.  
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Figure 1. Loss model of the injected carriers and
definition of the conversion efficiency

2 Definition of carrier conversion efficiency in this work 
In this section we define the carrier conversion efficiencies, which will be used for the evaluation of the carrier losses in 
the SOA. Our loss model of the injected carrier is summarized in Fig. 1. The SOA stores carriers N(Iop) in its active 
region with the injection of a driving current Iop. When Iop exceeds the transparent current I0, (and N exceeds N0,) 
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population inversion occurs and the SOA has a positive gain G(N)>1. Thus we define η1≡(Iop-I0)/Iop a current ratio 
which exceeds transparent current. Then the total number of the excess carriers, i.e. Nex≡N-N0, can be approximately 
given as follows: In many applications, carrier dynamics in the SOA is well described with a rate equation model[4]; 
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Where nc stands for the carrier density averaged over the whole length of the active region (with volume V), q 
represents the elemental charge, Ecw and Epulse are the amplitudes of the input lights and τc is the carrier lifetime. When 
there is no input light, equation (1) has a steady solution. Then the excess carrier number Nex is given by 
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We define this quantity as the nominal injection carrier number.  
Apart from the estimation from current injection, we can estimate carrier densities from amplification of a cw light 

or ultrafast pulses in the SOA. If there are Ncw carriers which contribute to the cw amplification, Ncw should be related 
to the saturation power Psat

cwcw, the carrier lifetime τc and the small signal gain (SSG) G0[4,5]. Similarly, if there are Npulse 
carriers which contribute to the pulse amplification, the saturation energy Esat

pulsepulse should be determined by them;  
 

f a cw light 
or ultrafast pulses in the SOA. If there are Ncw carriers which contribute to the cw amplification, Ncw should be related 
to the saturation power Psat , the carrier lifetime τc and the small signal gain (SSG) G0[4,5]. Similarly, if there are Npulse 
carriers which contribute to the pulse amplification, the saturation energy Esat  should be determined by them;  
 
                                   (3)                                    (3) 

    E pulse

,ln 0 c

cw
sat

cw G
h
P

N τ
ν

××=

                                         (4) 
 

                                         (4) 
 

N .0ln G
h
sat

pulse ×=
ν

As illustrated in Fig. 1, we assume that Ncw is smaller than Nex
injectioninjection due to ASE emission, carrier overflow, Auger 

recombination etc., and that Npulse is smaller than Ncw due to spectral hole-burning etc. Then η2≡Ncw/Nex
injection injection and 

η3≡Npulse/Ncw represent the efficiencies in these loss processes.  
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η3≡Npulse/Ncw represent the efficiencies in these loss processes.  

For the ultrafast all-optical gating it is important to achieve large Npulse. That is realized when the total conversion 
efficiency η≡η1η2η3 is maximized. It will be possible by improving each contribution separately, once their dominant 
factors are revealed.  
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3 Conversion efficiency measurement and results 3 Conversion efficiency measurement and results 
To demonstrate the validity and utility of the former model, we performed SOA-parameter measurements and deduced 
carrier conversion efficiencies. So far we have measured seven SOA samples, as summarized in Table 1, to observe 
SOA-structure dependence. Two samples (K#1 and K#2) were designed by us and had similar cross-sectional structures 
with each other. The rest were commercial modules or custom chips by other manufacturers. 

To demonstrate the validity and utility of the former model, we performed SOA-parameter measurements and deduced 
carrier conversion efficiencies. So far we have measured seven SOA samples, as summarized in Table 1, to observe 
SOA-structure dependence. Two samples (K#1 and K#2) were designed by us and had similar cross-sectional structures 
with each other. The rest were commercial modules or custom chips by other manufacturers. 

To obtain ultrafast optical pulses with lower frequency than carrier-recovery rates of the SOAs, we used a 
mode-locked fiber laser (MLFL: Pritel Inc., UOC-3) with a LiNbO3 modulator. Pulses with 2-ps width, λ=1555 nm and 
10.5-GHz frequency from the MLFL were modulated down to 0.65-GHz or 1.3-GHz pulse train with the extinction 
ratio of typically 20 dB. The carrier lifetimes for several injection currents were acquired through cross gain modulation 
measurements, using a cross-correlator (Femtochrome Research Inc., FR-103XR). CW light (λ=1548 nm, -10 ~ -20 
dBm) from a DFB-LD was gain-modulated in the SOA by the low-frequency pulses. By assuming that the gain 
recovery profile G(t) is proportional to exp(g(N(t)-N0)), we obtained the carrier lifetimes τc. Gain saturation and SSG for 
cw input and also for pulse input were measured using same light sources and spectrum analyzers. The measured result 
of pulse-gain saturation for K#1 sample is shown in Fig. 2 as an example. The saturation energy Esat for the ultrafast 
pulses was obtained by fitting to the theoretical gain saturation formula[5]. The saturation power Psat for the cw light 
was obtained from cw output power at 3-dB gain suppression, by Psat =P3dB/ln 2 [5].  
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Then the three kinds of excess carrier numbers N and densities nc were obtained from those parameters. The results 
for two SOA samples are shown in Fig. 3. We observed that the measured carrier densities for all the SOA samples 
followed the relation: nex

injectioninjection>ncw>npulse. This fact supports our carrier-loss model in Fig. 1. 
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Figure 3: Measured results of the carrier densities at each stage in the Fig.1.
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Figure 2: Example of measured gain saturation for pulse

amplification. Dashed lines are fit curves.
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Figure 4: measured carrier-conversion efficiencies for each SOA samples. 
(a), (b), (c): each efficiencies η1~η3 and (d): total efficiency   

Sample Description Active Region
Length (µm)

K#1
K#2

custom 
custom
Avanex Inc.,
A1901

InPhenix Inc.,
custom chip
InPhenix Inc.,
custom chip
InPhenix Inc.,
custom chip
InPhenix Inc.,
IPSAD1501

900
1500

Symbol

Table 1: list of the SOA samples
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The conversion efficiencies in each of the loss processes are shown in Fig. 4. The total efficiencies η of these SOA 
for the ultrafast gating use were around 0.1~0.2. These results indicate that the total efficiency is not quite sensitive to 
the chip length, while largest η3 and smallest η2 were obtained with shortest samples in the set of simillar 
cross-sectional structure. In our next plan of surveying SOA series with different structures, we will search for the 
dominant factors for each efficiency and more efficient SOA structures. 
 
4 Conclusion  
We developed a new technique to characterize the conversion efficiencies of injected carriers into the carriers used in 
the ultrafast gating. This method was applied to SOA samples with different chip-lengths and structures. The results 
support our carrier-loss model. The conversion efficiency obtained in this work ranged from 0.1 to 0.2. Our on-going 
research with this technique will provide a way to design and fabricate highly efficient SOA. 
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