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Large Phase Shifts due to the x(?) Cascading Nonlinearity in Large Walk-off and
Loss Regimes in Semiconductors and Other Dispersive Materials
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The nonlinear phase shift associated with x'*) cascading was studied for ultrashort pulses in regimes with large
temporal walk-offs between the fundamental and the x®-generated second-harmonic (SH) pulses, a situation
typical of semiconductors. Despite the small overlap between the fundamental and SH pulses after they walk-off
each other, a nonlinear phase shift was numerically observed to occur at a rate comparable to that before they
walk-off. A 7/2 phase shift was demonstrated even in a waveguide 15 times longer than the walk-off length.
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The ¥® cascading nonlinearity® ? is recently attract-
ing new attention for applications as diverse as ultra-
fast switching,® optical transistor action,” and one- and
two-dimensional spatial solitons.>” One advantage of
this off-resonant process with x? materials is that it
requires a relatively small light intensity for inducing
a particular nonlinear phase shift when compared with
conventional y® processes. One limitation that has pre-
viously been believed to be serious is the tempral walk-off
which occurs between fundamental and second-harmonic
(SH) pulses in semiconductors and other dispersive me-
dia. For example, the maximum propagation length used
in early experiments was limited to 1.9 times the walk-
off length (L aeorr),” because the fundamental pulse
was assumed to no longer interact with the SH pulse
when the fundamental pulse walks off beyond the SH
pulse. Because they exhibit very short walk-off lengths
due to their strong refractive-index dispersion, semicon-
ductors are apparently unsuitable for cascading, despite
their large nonlinearities (d{2 = 90-130 pm/V, that is,
X;";)z =4-6 x 107" esu for GaAs, ref. 9) and their poten-
tial for integration with light sources and detectors. In
fact, the cascading phase shift in strong walk-off regimes
has never been investigated, either experimentally or
theoretically. To the contrary of currently held opin-
ion mentioned above, this paper shows that a significant
cascading phase ‘shift occurs even in a strong walk-off
regime, based on numerical simulations. As an exam-
ple pertinent to applications, the operating conditions
for a semiconductor-based Mach-Zehnder switch was es-
timated.

The starting point was the usual coupled-mode equa-

tions,®
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35 + kmauw = —iluy,u’, exp[—1Akz], (1)
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where u,, and u,,, are the fundamental and SH field am-
plitudes normalized as, E,(z,t) = u,(z,t) - B (z =
0,t=0) and By (2, t) = us,(z,t) - E.(z = 0,¢t = 0).
The walk-off terms are included via the group velocities
k!, and ki, , while the group velocity dispersion within
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each pulse’s spectrum is neglected. The phase mismatch
Ak is defined as Ak = k,,, — k,. The normalized input
field I' is defined as,

wedg  |By(z =0, t = 0)]

N ’

where d.g is the effective second-order susceptibility and
¢ is the light velocity. For an input pulse of width Tj
and a total propagation distance L, the coupled-mode
equations in a dimensionless form used in this work are,

I'=

gguw = —i(PL)uguu, expl—i(AkL)E,  (3)
g (K, ~ k) L@
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= —i(I'L)u? expli(AkKL)E). (4)

Here, z is normalized as £ = z/L. A moving reference
frame 7 = (t — k/,z) /T, was used so that u, (£, 7 = 0) in-
dicates the fundamental pulse’s peak amplitude through-
out 0 < z < L, while us,, (£, 7 = 0) indicates the SH field
amplitude at the fundamental pulse’s peak position. The
pulse walk-off factor (k,, — k!)L/T; in eq. (4) is simpli-
fied to L/ Lyancofr, when using the walk-off length defined
as Lyaneor = To/ (K}, —k'). Thus, the independent vari-
ables for this set of equations are the cumulative phase
mismatch AkL, the normalized input power (I"L)?, and
the pulse walk-off L/ L, ik-of- ‘

Figure 1 shows a sample simulation of the evolution of
the fundamental pulse interacting with a SH pulse cre-
ated by ¥® in a regime where the total propagation dis-
tance (L) is 15Ly,p0n- Because the SH intensity right
at the fundamental pulse’s peak is very weak in such
a large walk-off regime, the cascading interaction could
be reasonably assumed to not be significant when com-
pared with the evolution without walk-off (Fig. 2). To
the contrary, the fundamental pulse gains a /2 nonlin-
ear phase shift according to the calculations, as shown at
L/L a0z = 15 in Fig. 3. The fundamental throughput
is as large as 0.33, even though the fundamental pulse
energy converted to SH effectively never returns to the
fundamental by down-conversion. Here, the cumulative
phase mismatch AkL was assumed to be 7%, and the
normalized input power (I'L)? was 120. This geometry
gives a net phase shift of about 1.27 in the limit of no
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(a) Fundamental Pulse
(b) Second-Harmonic Pulse
Fig. 1. Simulated evolution of the fundamental (a) and sec-

ond-harmonic (SH) (b) pulses, in a large walk-off regime
(L = 15Lyaik-off)- The fundamental pulse acquires a .7r/2 non-
linear phase shift, while that in the no-walk-off limit is approx-
imately 1.27. AxL = 7% and (I'L)? = 120 are assumed. The
time scale ranges from ~11Tp to +11Tp, where Tp is the initial
pulse width. The z scale ranges from 0 to L.

Fundamental Pulse

Fig. 2. Simulated evolution of the fundamental pulse in the
no-walk-off limit, where the SH pulse co-propagates. The same
parameters (except for walk-off) are assumed. The time scale
ranges from —2.7Ty to +2.7Tp, where the pulse break-up as well
as the oscillation (due to down conversion) are clearly shown.

walk-off (L/L,.ior = 0). Another set of results ob-
tained for AKL = 107 and (I"L)? = 400 also showed a
large nonlinear phase shift.

When a 1-psec 1.55-um pulse propagates in a typical
semiconductor waveguide, L = 15La-0p corresponds
typically to 4.5mm. (I"L)?> = 120 implies a 20W in-
put power, assuming an effective second-order suscepti-
bility dﬁj’ of 100pm/V for the waveguide.'® This peak
input power would be realistic for practical applications.
Figure 1 also shows that the walk-off almost completely
eliminates the pulse “break-up” which normally ocurrs
for such relatively small phase mismatchs (AkL = 7?) as
indicated in Fig. 2. This would be a distinct advantage
for applications.

An underlying key feature which leads to the large
phase shift was found to be the evolution of phase re-
lationship between the fundamental and SH fields. Af-
ter re-defining the fundamental and SH amplitudes as
U, = |u,| exp[i®,] and us, = |us.| expliPs,], we derived
a set of equations from the down-conversion eq. (eg. (3)),

9]

8_§Q5w = —(FL) . |’l_l,2w‘ . COS[Z@L‘, - @24,, + AkL§]7 (5)
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Fig. 3. The pulse-walk-off dependencies of the nonlinear phase
shift and the throughput of the fundamental pulse (|u.|?). The
propagation distance L is kept constant. A =/2 shift occurs
even at (kb — kl,)L/To(= L/Lwalk-oft) = 15 (AkL = 72 and
(I'L)? = 120). '
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Fig. 4. Evolution of the nonlinear phase shift &,(¢, 7 = 0)
together with the fundamental-pulse (solid line) and sec-
ond-harmonic-pulse (dotted line) intensities at the fundamen-
tal pulse’s peak position (r = 0). (a) in the walk-off regime
[L/Lyaik-of = 15, AkL = =2, (I'L)?> = 120]. The relative
phase shift (dashed line) remains near 4+ from z = L/3 through
z = L. (b) in the no-walk-off limit [E/Lyak-of = 0, AxL = 72,
(I'L)? = 120] for comparison.

and
o
8_§'u“’| = —(I'L)-|uze| - |uo| -sin[2@,, — Py, + AKLE]. (6)

Equation (5) is responsible for the nonlinear phase shift
of the fundamental pulse at its peak &,,(£, 7 = 0) (hence-
forth, all variables are discussed at the fundamental
pulse’s peak position, 7 = 0). After the SH pulse walks
off beyond the fundamental pulse in the region L/3 <
z < L, the cosine factor cos[2@,,(§, 7 =0) — @5, (£, 7 =
0) + AkLE] was found to stay close to unity because the
relative phase [20, (€, 7 = 0) — $,,(¢, 7 = 0) + AkL{]
remains approximately +m (Fig. 4(a)). This feature
was confirmed clearly in a wide range of conditions
(L/Lwalk-oﬂ' = 3-20 for [AI{L = 7!'2, (PL)2 = 120],
L/Lyanon = 2-50 for [AkL = 10, (I'L)? = 400], etc.).
Thus, the nonlinear phase shift occurs continuously, de-
spite the lack of strong down conversion. In contrast to
this behaviour, without the walk-off [L/L..10r = 0] the
relative phase keeps changing between +7/2 and +37/2
and therefore a significant phase shift occurs only when
the relative phase crosses +n (Fig. 4(b)). In fact, the
fundamental pulse in the walk-off regime in Fig. 4(a) ac-
quired one half of its total phase shift in propagating
from z = L/3 (= 5L a-0) t0 L, although the SH in-
tensities at the fundamental pulse’s peak (| F,. (7 = 0)|?)
at z= L/3 and z = L were one and two orders of mag-
nitude smaller respectively than the SH peak intensity
near z = 0. Even with this small SH field co-propagating
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Fig. 5. Evolution of the phases and intensities in a no-walk-off
regime, but with large second-harmonic loss. A normalized loss
(a2w L) of 20 was assumed. Despite the small second-harmonic
intensity from z = L /3 through L, a 7 /2 shift occurs again. The
relative phase shift remains near -+, in a way similar to that in
the walk-off regime.

with the fundamental pulse, the phase shift occurred at
a rate comparable to that before they walk-off.!") This is
a consequence of the increase in the cosine factor which
partly cancels the decrease in the |E,,| (not |Es,|?) fac-
tor in eq. (5). Similarly, the relative phase in the sine
term in eq. (6) suppresses the loss of fundamental pulse
energy. This is consistent with the fact that minimal SH
is generated during the propagation except at the very
beginning stage (z < L/3), as previously seen in Fig. 1.

A large phase shift was also observed in a manner sim-
ilar to that just discussed for the walk-off regime, when
a large loss for the second-harmonic light (as,) was as-
sumed in the waveguide. The SHG differential equation,

a o, L
pgv Ty
was used in place of eq. (4). The normalized absorption
oL in Fig. 5 was chosen such that |u,,|? at z = L/3 is
one order of magnitude smaller than the SH peak in-
tensity, as in Fig. 4(a). The absorption thus chosen
was a»,L = 20, which means that the transmittance
for second-harmonic light intensity of this waveguide is
only exp(—20) = 2 x 107°. Despite this large absorp-
tion, Fig. 5 shows that a large nonlinear phase shift of
/2 still occurs. The relative phase was approximately
+7 again, in a manner similar to that in the walk-off
regime. Note that, both in the walk-off regime and in
the loss regime the SH field at the fundamental pulse’s
peak is being “lost” along the propagation path by the
walk-off and by the absorption respectively. These re-
sults suggest that a loss of the SH field “pins” the rela-
tive phase near 4+, which leads to a continuous phase
shift that suppresses the energy exchange between the
fundamental and harmonic. This feature which covers
both the walk-off and loss regimes is different from any
of the results reported by DeSalvo et alV or the cases
discussed in the recent paper of Kobyakov and Lederer'?
in which they reviewed the theoretical work published to
date. From the perspective of the generic type of system
of equations involved, the two casess discussed in the
present work are dissipative in nature. Previously, cas-
cading nonlinearities in a dissipative system were rarely
discussed, to the best of author’s knowledge, except for
the pioneering work by Armstrong et al.'® Their focus,
however, was on an exact solution for the special case,
Qo = Q-
Finally, the feasibility of a Mach-Zehnder switch!® was

Usy = —i(I'L) - 2, expli(AkKL)E], (7)
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Fig. 6. The fundamental-pulse throughput for a Mach-Zehnder-
interferometer switch (inset), in the walk-off regime (L/Lyaik-off
=15). The hatched regions identify the two cascading regions
which are biased to different sides of the SHG phase matching
condition (AxL = £7?). '

confirmed for the cascading conditions in the walk-off
regime (Fig. 6). A pulse in each of the two cascading
regions, which are biased to different sides of the phase-
matching condition (AkL = +x?), acquires a /2 shift
within the 15 walk-off length distance. The switch-on
curve is smooth, and the switch-on pulse shape exhbits
no pulse break-up.

In summary, we have shown that 7/2 phase shifts can
be obtained both in a walk-off regime (L/L,op.ox = 15)
and in a high harmonic-loss regime (a,,L = 20). These
results should broaden the choice of ¥® materials that
can be used for cascading, and also allow operation with
ultrafast pulses.
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